메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 실제 인터넷 백본으로부터 일주일간 캡쳐한 트래픽을 대상으로 기초 통계 분석을 하고, 여기서 발생한 이상트래픽을 분석한다. 이상트래픽은 국외에서 국내로 유입되는 UDP 기반 트래픽에서 나타났다. 트래픽 자료에 대한 탐색적 분석 결과 packets/sec 분포와 bytes/sec 분포에서 이상트래픽이 발생할 경우에 나타나는 새로운 형태의 특성이 발견되었다. 본 연구에서는 이러한 이상트래픽의 원인이 되는 플로우를 분류하기 위하여 자율학습(unsupervised learning) 방법의 하나인 분류분석(k-means clustering)을 이용하였으며, 분류된 플로우의 특성분석을 토대로 발생한 이상트래픽은 DoS 공격의 일종에 의한 것으로 결론지었다. 또한 본 연구에서는 이상트래픽의 원인이 되는 플로우의 존재 시점을 탐지하기 위하여 새로운 기법을 제시한다. 제시된 기법은 분포적합검정(goodness of fit test)의 한 방법인 Cramer-Von-Misses 검정에서 쓰이는 통계량에 바탕을 두고 있으며 1초 단위의 탐지기법이다. 제시된 기법의 응용 결과, 이상트래픽의 존재 시점으로 판단된 시점과 DoS 공격으로 판단된 플로우들의 시점이 일치함을 확인할 수 있었다.

목차

요약
Abstract
1. 서론
2. 미시적 인터넷 백본 트래픽의 거시적 분석
3. 이상트래픽 특성화
4. 플로우 수준에서의 이상트래픽 특성
5. 플로우 특성과 분류 분석
6. 이상트래픽 탐지
7. 결론
참고문헌
저자소개

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015630152