메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Fazlina Ahmat Ruslan (Universiti Teknologi MARA) Ramli Adnan (Universiti Teknologi MARA) Abd Manan Samad (Universiti Teknologi MARA) Zainazlan Md Zain (Universiti Teknologi MARA)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2012
발행연도
2012.10
수록면
868 - 872 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Particle filter is a Monte Carlo simulation method that designed to approximate nonlinear problem and tracks the state of the dynamic system. Over the past decade, particle filters have been successfully applied in wide variety of applications. By using geographical information system (GIS) database, particle filter applications involve tracking of underwater (UW) vessels, surface ships, cars and aircraft. Particle filter also contributed in robotics community, where the algorithm can solve the simultaneous localization and mapping (SLAM) problem. Since multiple targets can be tracked from a video stream using particle filter, visual tracking is another interesting application of particle filter. However, particle filter is rarely used in the flood water level prediction and tracking applications. This paper proposes flood water level prediction and tracking using Sampling Importance Resampling (SIR) particle filter which is one of particle filter variations. As the effectiveness of the particle filter depends on the parameters stated in the algorithm, the parameters are varied to analyze the performance result. The parameters are number of particles and number of time step. From the simulation, the performance result of particle filter is quite impressive to look into.

목차

Abstract
I. INTRODUCTION
II. THEORY OF PARTICLE FILTER
IV. RESULTS AND DISCUSSION
VI. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0