메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ye Lim Rhie (Seoul National University) Ji Hyoun Lim (Ulsan National Institute of Science and Technology) Myung Hwan Yun (Seoul National University)
저널정보
대한인간공학회 대한인간공학회지 대한인간공학회지 제34권 제5호
발행연도
2015.10
수록면
377 - 399 (23page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Objective: The aim of this study is to understand and identify the critical issues in vision research area using content analysis and network analysis.
Background: Vision, the most influential factor in information processing, has been studied in a wide range of area. As studies on vision are dispersed across a broad area of research and the number of published researches is ever increasing, a bibliometric analysis towards literature would assist researchers in understanding and identifying critical issues in their research.
Method: In this study, content and network analysis were applied on the meta-data of literatures collected using three search keywords: "visual search", "eye movement", and "eye tracking".
Results: Content analysis focuses on extracting meaningful information from the text, deducting seven categories of research area; "stimuli and task", "condition", "measures", "participants", "eye movement behavior", "biological system", and "cognitive process". Network analysis extracts relational aspect of research areas, presenting characteristics of sub-groups identified by community detection algorithm.
Conclusion: Using these methods, studies on vision were quantitatively analyzed and the results helped understand the overall relation between concepts and keywords. Application: The results of this study suggests that the use of content and network analysis helps identifying not only trends of specific research areas but also the relational aspects of each research issue while minimizing researchers" bias. Moreover, the investigated structural relationship would help identify the interrelated subjects from a macroscopic view.

목차

1. Introduction
2. Method
3. Results of Content Analysis
4. Results of Network Analysis
5. Discussion and Conclusion
References

참고문헌 (52)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-530-002088375