메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Wenxiang Song (Shanghai University) Shengkang Le (Shanghai University) Xiaoxin Wu (Shanghai University) Yi Ruan (Shanghai University)
저널정보
전력전자학회 JOURNAL OF POWER ELECTRONICS JOURNAL OF POWER ELECTRONICS Vol.17 No.3
발행연도
2017.5
수록면
674 - 685 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The conventional model predictive direct torque control (MPDTC) method uses all of the voltage vectors available from a two level voltage source inverter for the prediction of the stator flux and stator current, which leads to a heavy computational burden. This paper proposes an improved model predictive direct torque control method. The stator flux predictive controller is obtained from an analysis of the relationship between the stator flux and the torque, which can be used to calculate the desired voltage vector based on the stator flux and torque reference. Then this method only needs to evaluate three voltage vectors in the sector of the desired voltage vector. As a result, the computational burden of the conventional MPDTC is effectively reduced. The time delay introduced by the computational time causes the stator current to oscillate around its reference. It also increases the current and torque ripples. To address this problem, a delay compensation method is adopted in this paper. Furthermore, the switching frequency of the inverter is significantly reduced by introducing the constraint of the power semiconductor switching number to the cost function of the MPDTC. Both simulation and experimental results are presented to verify the validity and feasibility of the proposed method.

목차

Abstract
I. INTRODUCTION
II. MATHEMATICAL MODEL OF AN INDUCTION MACHINE
III. CONVENTIONAL MODEL PREDICTIVE DIRECT TORQUE CONTROL
IV. IMPROVED MODEL PREDICTIVE DIRECT TORQUE CONTROL
V. SIMULATION RESULTS
VI. EXPERIMENTAL RESULTS
VII. CONCLUSIONS
REFERENCES

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0