메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Muhammad Akbar (Busan University of Foreign Studies) Kyoo Jae Shin (Busan University of Foreign Studies) Hee Tae Chung (Busan University of Foreign Studies)
저널정보
한국정보기술학회 Proceedings of KIIT Conference 한국정보기술학회 2017년도 하계종합학술대회 및 대학생논문경진대회
발행연도
2017.6
수록면
81 - 84 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the digital era, computers have affected every sphere of life and human activities. By developing humancomputer interaction (HCI) to the further level, it will become a beneficial impact to the human activities. The proposed study is the continuation from the previous study that aims to control the fish robot based on its color. In this paper, we try to control the fish robot by using pixel region of the image in the monitor. Every region of pixel determines different native motion of the fish robot. From the real time video, users are able to control the motion of the fish robot by using blue card as the pointer as well as the option of the native motion of the fish is displayed in the screen. Here, we used color the blue card and the pixel region will decide the swim motion of the fish. Region based of robotic fish control is consist of three steps which are color recognition, color tracking, and finally command sending from the computer to the fish robot through RF module. In this study, we will use python and OpenCV to develop the software side and RF module to send the command to the fish through serial communication. Our result shows that an interactive human control which is in this study, Robotic Fish Control using PC Monitor Marker, had successfully controlled the motion of the fish in a very interactive way.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Design of Control System of Robotic Fish
Ⅲ. Design of Control Algorithm
Ⅳ. Experimental Results
Ⅴ. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-000918755