메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
성진택 (호남대학교)
저널정보
한국정보전자통신기술학회 한국정보전자통신기술학회 논문지 한국정보전자통신기술학회 논문지 제10권 제4호
발행연도
2017.8
수록면
257 - 267 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
압축센싱(Compressed Sensing)은 선형 역문제(inverse problem)를 다루고 있으며, 그 이론적 연구결과는 관련분야에 많은 영향을 주어 놀랄 만한 연구성과를 발표하였다. 그러나 압축센싱을 실제 환경에 적용하기 위해서는 두 가지 중요한 문제가 남아 있다. 하나는 실시간에 가까운 복원 성능이 보장되어야 하며, 다른 하나는 신호가 희소성을 갖도록 전처리가 가능해야 한다는 점이다. 이에 대한 문제들을 해결하고자 딥러닝(deep learning) 기술을 활용한 압축센싱 신호 복원방법이 최근에 등장하였다. 본 논문에서는 딥러닝 기반의 압축센싱 신호 복원방법을 고찰하고 최신 연구결과를 비교 · 분석하고자 한다. 관련 연구결과에서는 실시간에 가까운 복원 시간에 도달하였으며, 기존 복원방법 대비 더 우수한 복원 성능을 보여 주었다. 최근 연구에서 보여준 딥러닝을 활용한 압축센싱 신호 복원방법은 압축센싱의 활용가치를 더욱 높일 뿐만 아니라 신호처리와 통신분야에서 크게 활용될 수 있을 것으로 기대된다.

목차

요약
Abstract
1. 서론
2. 딥러닝(Deep Learning) 소개
3. 딥러닝 기반의 압축센싱
4. 결론
REFERENCES

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0