메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
전병기 (인하대학교) 김의종 (인하대학교)
저널정보
대한설비공학회 설비공학논문집 설비공학논문집 제29권 제10호
발행연도
2017.10
수록면
497 - 503 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In recent years, studies on the prediction of building load using Artificial Neural Network (ANN) models have been actively conducted in the field of building energy In general, building loads predicted by ANN models show a sharp deviation unless large data sets are used for learning. On the other hands, some of the input data are hard to be acquired by common measuring devices. In this work, we estimate daily building loads with a limited number of input data and fewer pastdatasets (3 to 10 days). The proposed model with fewer input data gave satisfactory results as regards to the ASHRAE Guide Line showing 21% in CVRMSE and -3.23% in MBE. However, the level of accuracy cannot be enhanced since data used for learning are insufficient and the typical ANN models cannot account for thermal capacity effects of the building. An attempt proposed in this work is that learning procersses are sequenced frequrently and past data are accumulated for performance improvement. As a result, the model met the guidelines provided by ASHRAE, DOE, and IPMVP with by 17%, -1.4% in CVRMSE and MBE, respectively.

목차

Abstract
1. 서론
2. 학습 알고리즘 및 변수 선정
3. 인공 신경망 기반 건물 부하 예측 모델 작성
4. 시뮬레이션 결과 및 분석
5. 결론
References

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-553-001355336