메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Anjana Sharma (GGM Science College) Pawanesh Abrol (University of Jammu)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.12 No.2
발행연도
2018.6
수록면
77 - 89 (13page)
DOI
10.5626/JCSE.2018.12.2.77

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The detection accuracy of gaze direction mainly depends on the performance of features extracted from eye images. Limitations on the estimation of gaze direction include harmful infrared (IR) light, expensive devices, static thresholding, inappropriate and complex segmentation techniques, corneal reflections, etc. In this study, an efficient appearance cum feature-based detection model, namely, iris center-based gaze estimation (ICGE), has been proposed. The model is an extension of the earlier proposed glint-based gaze direction estimation (GDE) model and overcomes the above limitations. The ICGE model has been analyzed for GDE based on iris center coordinates using a local adaptive thresholding technique. An indigenous database using more than two hundred images of different subjects on a five quadrant map screen generates almost 90% accurate results for iris and gaze quadrant detection. The distinguishing features of the low cost, non-intrusive proposed model include a lack of IR and affordable ubiquitous H/W designing, large subject-camera distance and screen dimensions, no glint dependency, and many more. The proposed model also shows significantly better results in the lower periphery corners of the quadrant map than traditional models. In addition, aside from the comparison with the GDE model, the proposed model has also been compared with other existing techniques.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. RELATED WORK
Ⅲ. EXPERIMENTAL ANALYSIS
Ⅳ. RESULTS AND DISCUSSION
Ⅴ. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-569-003141645