메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
석현석 (전남대학교) 신항식 (전남대학교)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제67권 제7호
발행연도
2018.7
수록면
962 - 968 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, we developed novel indicators to assess postoperative pain based on PPG derivative waveform. As the candidate indicator of postoperative pain assessment, the time from the start of beating to the n-th peak(Tn) and the n-th peak amplitude(An) of the PPG derivative were selected. In order to verify derived indicators, each candidate indicator was derived from the PPG of 78 subjects before and after surgery, and it was confirmed whether significant changes were observed after surgery. Logistic classification was performed with each proposed indicator to calculate the pain classification accuracy, then the classification performance was compared with SPI(Surgical Pleth Index, GE Healthcare, Chicago, US). The results showed that there were significant differences(p < 0.01) in all indicators except for T3 and A3. The coefficient of variation(CV) of every time-related indicators were lower than the CV of SPI(30.43%), however, the CV in amplitude-related parameters were higher than that of SPI. Among the candidate indicators, amplitude of the first peak, A1, showed that highest accuracy in post-operative pain classification, 68.72%, and it is 15.53% higher than SPI.

목차

Abstract
1. 서론
2. 본론
3. 결과
4. 토의
5. 결론
References

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-560-003124610