메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
나준엽 (인하대학교) 심창훈 (인하대학교) 박인규 (인하대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제23권 제5호
발행연도
2018.9
수록면
614 - 621 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 generative adversarial network (GAN)을 이용한 비감독 학습을 통해 깊이 카메라로 깊이 영상을 취득할 때 발생한 손실된 부분을 복원하는 기법을 제안한다. 제안하는 기법은 3D morphable model convolutional neural network (3DMM CNN)와 largescale CelebFaces Attribute (CelebA) 데이터 셋 그리고 FaceWarehouse 데이터 셋을 이용하여 학습용 얼굴 깊이 영상을 생성하고 deep convolutional GAN (DCGAN)의 생성자(generator)와 Wasserstein distance를 손실함수로 적용한 구별자(discriminator)를 미니맥스 게임기법을 통해 학습시킨다. 이후 학습된 생성자와 손실 부분을 복원해주기 위한 새로운 손실함수를 이용하여 또 다른 학습을 통해 최종적으로 깊이 카메라로 취득된 얼굴 깊이 영상의 손실 부분을 복원한다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 얼굴 깊이 영상 취득
Ⅲ. DCGAN 학습 및 깊이 영상 복원
Ⅳ. 실험 결과
Ⅴ. 결론
참고문헌 (References)

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-567-003588475