메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이건영 (광운대) 경덕환 서기성 (서경대학교)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제68권 제2호
발행연도
2019.2
수록면
359 - 363 (5page)
DOI
10.5370/KIEE.2019.68.2.359

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As commercial drones have been widely used, concerns for collision accidents with people and invading secured properties are emerging. The detection of drone is a challenging problem. The deep learning based object detection techniques for detecting drones have been applied, but limited to the specific cases such as detection of drones from bird and/or background. We have tried not only detection of drones, but classification of different drones with an end-to-end model. YOLOv2 is used as an object detection model. In order to supplement insufficient data by shooting drones, data augmentation from collected images is executed. Also transfer learning from ImageNet for YOLOv2 darknet framework is performed. The experimental results for drone detection with average IoU and recall are compared and analysed.

목차

Abstract
1. 서론
2. 드론 검출 및 분류
3. CNN 기반 드론 검출 기법
4. 실험 및 결과 분석
5. 결론
References

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-560-000438075