메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yanbin Liu (Academy of Armored Force Engineering) Weilin Zhuge (Tsinghua University) Yangjun Zhang (Tsinghua University) Shuyong Zhang (National Key Laboratory of Diesel Engine Turbocharging Technology)
저널정보
한국유체기계학회 International Journal of Fluid Machinery and Systems International Journal of Fluid Machinery and Systems Vol.11 No.4
발행연도
2018.12
수록면
432 - 441 (10page)
DOI
10.5293/IJFMS.2018.11.4.432

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Turbocharging is an important way to raise engine power density, save energy and reduce emission. Because turbocharger is driven by exhaust gas, energy utilization rate is a key factor for turbocharged engine performance. As a part transferring heat to mechanical energy, turbine efficiency decides exhaust gas energy utilization. Because of three-dimensional flow field distortion effect at outlet to exhaust manifold, turbine efficiency will be different from MAP when engine working. Influences by interaction in turbine system, turbine efficiency will decrease. So in order to evaluate turbine operating performance and design or select turbine more precisely, it is necessary to build a through-flow model for turbine which can consider three-dimensional flow field distortion effect.
Unsteady flow field distortion at outlet to turbine was analyzed and flow field interaction law between exhaust manifold and turbine was studied. On the basis, six typical flow field distortion models in an engine operation cycle were raised. Then influences six models on each flow stage in turbine were analyzed. Further, models for exhaust manifold and turbine were built separately. Difference between unsteady three-dimensional simulation result and that based on turbine system through-flow model was compared and analyzed. Research result illustrated that difference of turbine cycle efficiency was only 0.1% and difference of turbine cycle work was 0.3%. So it can be deduced that turbine system through-flow model can predict turbine operation performance precisely and help turbine system matching exactly.

목차

Abstract
1. Introduction
2. Analysis of flow distortion and influence law
3. Study of through-flow model for turbine system
4. Conclusion
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-554-000447789