메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최규진 (아주대학교) 신주연 (아주대학교) 경주현 (아주대학교) 경민호 (아주대학교) 이윤진 (아주대학교)
저널정보
한국컴퓨터그래픽스학회 컴퓨터그래픽스학회논문지 컴퓨터그래픽스학회논문지 제25권 제3호
발행연도
2019.7
수록면
123 - 131 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에서는 CT 영상의 대퇴골 부위를 해부학적으로 의미 있게 변형하여 CT 영상의 대퇴골 영역을 분할하기 위한 컨벌루션 신경망(CNN)의 훈련 데이터를 증강하는 방법을 제안한다. 먼저 CT 영상으로부터 삼차원 삼각형 대퇴골 메쉬를 얻는다. 그 후 메쉬의 국소부위에 대한 기하학적 특성을 계산하고, 군집화하여 메쉬를 의미 있는 부분들로 분할한다. 마지막으로, 분할한 부분들을 적절한 알고리즘으로 변형한 뒤, 이를 바탕으로 CT 영상을 와핑하여 새로운 CT영상을 생성하였다. 본 연구의 데이터 증강 방법을 이용하여 학습시킨 딥러닝 모델은 기하학적 변환이나 색상 변환 같이 일반적으로 사용되는 데이터 증강법과 비교하여 더 나은 영상분할 성능을 보인다.

목차

요약
Abstract
1. 서론
2. 전체 과정
3. 메쉬 추출
4. 계층적 면 군집화를 통한 메쉬 분할
5. 메쉬 변형
6. CT 영상 와핑
7. 실험 결과
8. 결론 및 향후 연구 방향
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-004-000901063