메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최영재 (Chung-Ang University) 박보랑 (Chung-Ang University) 최은지 (Chung-Ang University) 문진우 (Chung-Ang University)
저널정보
한국생태환경건축학회 KIEAE Journal KIEAE Journal Vol.19 No.6(Wn.100)
발행연도
2019.12
수록면
73 - 79 (7page)
DOI
10.12813/kieae.2019.19.6.073

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Purpose: The purpose of this paper is to develop an ANN model for predicting the refrigerant flow rate of the cooling system in order to provide optimal thermal environment in the data center as well as an adaptive control algorithm which allows the predictive model to adapt to the diverse data center environments. Method: Two data center models were consisted by using ANSYS Fluent CFD tool. Model A was used to obtain data for ANN model training and the adaptive control algorithm was tested on the Model B. After developing the ANN model, the optimization process was conducted and the optimized model was employed in the adaptive control algorithm. Result: A model consisted with 4 hidden layers and 11 hidden neurons presented the highest accuracy of CVRMSE 0.47%. In addition, the adaptation test of the control algorithm was conducted by changing the air flow rate and the setpoint temperature of supply air. When the setpoint temperature was set to 20℃ and 25℃, the supply air temperature reached properly to the designated setpoint temperature in 3 cycles and 20 cycles, respectively. Each case presented maximum error of the temperature as much as 19.6% and 18.12%. After entering steady state, the ANN model adapted well on the setpoint temperature. In conclusion, the ANN model and the adaptive algorithm demonstrated a probability to be applied to the data center.

목차

ABSTRACT
1. 서론
2. 데이터센터 개요
3. 예측 모델 및 적응형 제어 알고리즘 개발
4. 결과분석
5. 결론
Reference

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0