메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
서수경 (가천대학교) 이태건 (가천대학교) 윤영미 (가천대학교)
저널정보
한국정보기술학회 한국정보기술학회논문지 한국정보기술학회논문지 제17권 제12호(JKIIT, Vol.17, No.12)
발행연도
2019.12
수록면
21 - 28 (8page)
DOI
10.14801/jkiit.2019.17.12.21

이용수

DBpia Top 0.1%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
약물 부작용이란 질병의 예방, 진단 또는 치료에 사용된 약물로부터 발생한 유해하고 의도하지 않은 현상이다. 이러한 부작용은 환자를 죽음에 이르게 할 수 있으며, 약물 개발 실패의 주요 원인 중 하나이다, 따라서, 다양한 방법들이 부작용을 알아내기 위하여 시도되었다. 본 연구에서는 시스템스 바이올로지 접근법을 기반으로 기존 연구에서 주로 사용되었던 화학적 구조, 생물학적 정보 이외에도 다양한 표현형 정보를 사용하는 것에 주목하였다. 먼저, 5가지 적응증 데이터베이스, 화학적 구조, 타겟 유전자 정보를 수집하고 개별로 유사도를 계산하였다. 테이블은 하나의 약물-부작용에 대하여 앞서 생성된 유사도를 이용하여 생성되었고 다양한 기계학습 기법이 적용되었다. 결과는 AUC(Area Under the ROC Curve)값을 통해 확인하였다. 본 연구의 유의성은 비교 실험을 통하여 확인하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 연구 방법
Ⅳ. 결과
Ⅴ. 결론 및 향후 과제
References

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-000101086