메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
서홍덕 (Namseoul University) 김의명 (Namseoul University)
저널정보
한국측량학회 한국측량학회지 한국측량학회지 제37권 제6호
발행연도
2019.12
수록면
405 - 416 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
정보통신기술의 발달로 인하여 데이터의 생산과 처리 속도가 빨라지고 있다. 인공지능의 한 분야인 머신러닝을 이용하여 객체를 분류하기 위해, 학습에 필요한 데이터는 인터넷과 공간정보기술의 발달로 인하여 손쉽게 수집할 수 있게 되었다. 공간정보 분야에서도 머신러닝은 영상, 포인트 클라우드 등을 이용하여 객체를 분류 또는 인식하는 것에 적용되고 있다. 본 연구에서는 기 구축된 수치지도 버전 1.0을 활용하여 학습 데이터를 수동으로 구축하는 문제점을 개선하고 영상과 포인트 클라우드를 이용하여 도로, 건물, 식생을 분류하는 기법을 제안하였다. 실험을 통해서 RGB 밴드만을 갖고 있는 실감정사영상을 사용하였을 경우 색상을 뚜렷하게 구분할 수 있는 도로, 건물, 식생의 분류가 가능하였지만 색상이 유사한 경우에는 분류가 잘 되지 않는 한계를 확인할 수 있었다. 이를 개선하기 위해 실감정사영상과 정규수치표면모델을 밴드 퓨전한 후 랜덤포레스트와 서포트벡터머신 기법을 적용하였으며 이를 통해 85%이상의 정확도로 도로, 건물, 식생을 분류하였다.

목차

Abstract
초록
1. 서론
2. 연구방법
3. 실험
4. 결론
References

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-533-000264071