메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정세정 (Kyungpook National University) 김태헌 (Kyungpook National University) 이원희 (Kyungpook National University) 한유경 (Kyungpook National University)
저널정보
한국측량학회 한국측량학회지 한국측량학회지 제37권 제6호
발행연도
2019.12
수록면
481 - 489 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
다시기 위성 영상을 이용한 변화탐지 분석은 인간 활동의 변화를 직접 반영하는 지표이다. 변화탐지는 크게 화소 기반 변화탐지(PBCD: Pixel-Based Change Detection)와 객체 기반 변화탐지(OBCD: Object-Based Change Detection)로 구분한다. 화소 기반 변화탐지는 알고리즘이 간단하고 비교적 쉽게 정량적 분석이 가능해 전통적으로 많이 쓰여온 기법이나 고해상도 영상에서의 화소 기반 변화탐지는 오탐지나 노이즈(noise)가 발생하기 때문에 고해상도 영상에서의 활용도가 떨어진다. 또한, 고해상도 다시기 영상은 취득 당시 센서의 자세나 지형적 특성으로 인해 영상 등록(image registration)을 수행한 이후에도 지형적 불일치가 발생한다. 등록오차(registration noise)라고 불리는 이 지형 불일치는 고해상도 다시기 영상 활용을 위한 공간정보 추출 시 정확도를 떨어뜨리는 방해요인으로 작용한다. 이에 본 연구에서는 등록오차를 고려한 고해상도 영상의 객체 기반 변화탐지를 수행하였다. 이 때, 다양한 화소 기반 변화탐지 결과를 모두 고려한 객체 기반 변화탐지 결과를 도출하였으며 이 과정에서 분할 영상(segmentation image)과의 major voting을 적용하였다. 제안 기법과 화소 기반 변화탐지 결과, 그리고 화소 기반 변화탐지 결과를 객체 기반 변화탐지로 확장한 결과의 비교를 통해 제안 기법의 우수성을 평가하였다.

목차

Abstract
초록
1. 서론
2. 실험지역 및 자료
3. 연구방법
4. 실험 결과 및 분석
5. 결론
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-533-000263998