메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
양환근 (한국교원대학교) 이태욱 (한국교원대학교)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회 학술발표논문집 2020년 한국컴퓨터정보학회 동계학술대회 논문집 제28권 제1호
발행연도
2020.1
수록면
117 - 120 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 인공지능 메이커 교육과 관련한 요소를 논문 네트워크 키워드 분석과 다양한 빅데이터를 종합하여 핵심용어를 선정 후 인공지능 메이커 교육을 시스템 다이내믹스의 Vensim프로그램으로 인과지도(Casual Loop Diagramming)를 구조분석(모델의 구조)하여 예측 결과를 토대로 향후 미래 상황 추출 및 정책 결정 연구에 영향을 기여한다.
연구 결과 인공지능 교육 정책은 추후 인공지능 교육과 메이커 교육을 융합한 교육 관련 산업이 증대할 것으로 예측되며 교육 경쟁력 향상과 창의적 인재 양성, OTT를 이용한 인공지능 교육 콘텐츠 향상으로 학습에 활용성이 증대하게 된다. 또한 인공지능 교육 정책은 프로그래밍 교육으로 연결되어 성장기 학습자들의 사고력과 정서 발달에 도움 되며 다양한 교재 및 기기 등장으로 인한 학습에 다양성 역시 증가할 것으로 예측된다. 학교 차원에서는 교수·연구 지원 활동이 증가하여 수업 전문성을 가진 교사가 늘어나 학교 교육의 질은 확대되고 학부모는 인공지능 교육 정책에 긍정적으로 된다.
시스템 다이내믹스는 구조가 형태를 결정짓는다는 세계관에 기초하여 피드백 루프와 동태적 형태 유형을 파악하며 다양한 가능성이 존재하게 된다. 이는 추후 다양한 연구를 통해 인공지능 교육 정책 인과지도의 확대로 연결될 수 있음을 암시하며 본 논문을 통해 인공지능 교육 연구 확산에 시발점이 되었으면 한다.

목차

요약
I. Introduction
II. Preliminaries
III. The Proposed Scheme
IV. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-000271632