메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Joanna Kazzandra Dumagpi (Kwangwoon University) Woo-Young Jung (Kwangwoon University) Yong-Jin Jeong (Kwangwoon University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제23권 제4호
발행연도
2019.12
수록면
19 - 24 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
One of the most important applications of computer vision algorithms is the detection of threat objects in x-ray security images. However, in the practical setting, this task is complicated by two properties inherent to the dataset, namely, the problem of class imbalance and visual complexity. In our previous work, we resolved the class imbalance problem by using a GAN-based anomaly detection to balance out the bias induced by training a classification model on a non-practical dataset. In this paper, we propose a new method to alleviate the visual complexity problem by using a KNN-based automatic cropping algorithm to remove distracting and irrelevant information from the x-ray images. We use the cropped images as inputs to our current model. Empirical results show substantial improvement to our model, e.g. about 3% in the practical dataset, thus further outperforming previous approaches, which is very critical for security-based applications.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Proposed Method
Ⅲ. Experiment Results
Ⅳ. Conclusion
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-056-000378630