메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
명지연 (한양대학교) 전한종 (한양대학교)
저널정보
대한건축학회 대한건축학회 논문집 - 계획계 大韓建築學會論文集 計劃系 第36卷 第4號(通卷 第378號)
발행연도
2020.4
수록면
41 - 49 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The purpose of this study was to investigate the use of the Deep Neural Networks(DNN) model to classify user’s emotions, in particular Electroencephalography(EEG) toward Virtual-Reality(VR) based 3D design alternatives. Four different types of VR Space were constructed to measure a user’s emotion and EEG was measured for each stimulus. In addition to the quantitative evaluation based on EEG data, a questionnaire was conducted to qualitatively check whether there is a difference between VR stimuli. As a result, there is a significant difference between plan types according to the normalized ranking method. Therefore, the value of the subjective questionnaire was used as labeling data and collected EEG data was used for a feature value in the DNN model. Google TensorFlow was used to build and train the model. The accuracy of the developed model was 98.9%, which is higher than in previous studies. This indicates that there is a possibility of VR and Fast Fourier Transform(FFT) processing would affect the accuracy of the model, which means that it is possible to classify a user’s emotions toward VR based 3D design alternatives by measuring the EEG with this model.

목차

Abstract
1. 서론
2. 이론적 고찰
3. 뇌파 데이터 수집
4. 딥러닝을 이용한 VR 기반 3차원 공간에 대한 감정 분류 모델 구축
5. 결론
REFERENCES

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0