메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Kihoon Jeon (Pusan National University) Sanghwa Chung (Pusan National University) Donghwa Yoo (Pusan National University)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.14 No.2
발행연도
2020.6
수록면
76 - 87 (12page)
DOI
10.5626/JCSE.2020.14.2.76

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Owing to the development of the Internet of Things (IoT) paradigm, the energy consumption of devices and the reliability of communication have become important issues. Enhanced TSCH technology introduces a technique to select high-quality channels by using energy detection in the TSCH protocol to improve the reliability of communication in a dynamic environment where interference changes. However, it is difficult to apply ETSCH technology to a multi-hop network because the node that performs energy detection consumes more energy than the node that does not. In this article, we propose an adaptive channel-quality estimation (ACE), which flexibly adjusts the duty cycle of energy detection according to whether interference dynamically changes or not. ACEs are generally applicable regardless of the degree of change of interference, which improves energy efficiency. Also, we present ACE-blacklisting based TSCH (ACEBTSCH) that uses ACE and local channel blacklisting to blacklist the wireless channel based on energy detection in a multi-hop network. Experimental results show that ACEB-TSCH has a performance improvement of 15.94% over TSCH and 8.59% over PDR-blacklisting based TSCH.

목차

Abstract
I. INTRODUCTION
II. RELATED WORK
III. ACEB-TSCH
IV. PERFORMANCE ANALYSIS
V. CONCLUSION
REFERENCES

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-569-000854024