메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
중소기업융합학회 융합정보논문지 융합정보논문지 제10권 제5호
발행연도
2020.1
수록면
1 - 7 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
본 논문은 수중 IoT 네트워크에서 센서의 전력 소비를 줄이고 네트워크의 처리량을 향상하는 수중 링크 적응 방법을 제안한다. 링크 적응 방법의 하나인 AMC(Adaptive Modulation and Coding) 기술은 SNR(Signal Noise Rate)과 BER(Bit Error Rate)의 강한 상관관계를 이용하지만, 수중에 바로 적용하는 것은 어렵다. 따라서 수중 환경에 적합한 머신러닝 기반의 AMC 기술을 제안한다. 제안하는 MCS(Modulation Coding and Scheme) 예측 모델은 수중 채널 환경에서 목표 BER 값을 달성하기 위한 통신 방법을 예측한다. 예측된 통신 방법을 실제 수중 무선 통신에서 적용하는 것은 현실적으로 어렵기 때문에 본 논문에서는 높은 정확도의 BER 예측 모델을 사용해 MCS 예측 모델의 성능을 확인한다. 결과적으로 제안하는 AMC 기술은 통신 성공 확률을 올림으로써 머신러닝의 적용 가능성을 확인시켰다.

목차

등록된 정보가 없습니다.

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0