메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Charmgil Hong (Handong Global University)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제23권 제8호
발행연도
2020.8
수록면
915 - 926 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Outlier detection methods help one to identify unusual instances in data that may correspond to erroneous, exceptional, or surprising events or behaviors. This work studies conditional outlier detection, a special instance of the outlier detection problem, in the context of incorrect data label identification. Unlike conventional (unconditional) outlier detection methods that seek abnormalities across all data attributes, conditional outlier detection assumes data are given in pairs of input (condition) and output (response or label). Accordingly, the goal of conditional outlier detection is to identify incorrect or unusual output assignments considering their input as condition. As a solution to conditional outlier detection, this paper proposes the ratio-based outlier scoring (ROS) approach and its variant. The propose solutions work by adopting conventional outlier scores and are able to apply them to identify conditional outliers in data. Experiments on synthetic and real-world image datasets are conducted to demonstrate the benefits and advantages of the proposed approaches.

목차

ABSTRACT
1. INTRODUCTION
2. BACKGROUND
3. PROPOSED METHOD
4. EXPERIMENTAL STUDY
5. CONCLUSION
REFERENCE

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0