메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
윤소영 (Pukyong National University) 윤성대 (부경대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제24권 제8호
발행연도
2020.8
수록면
970 - 977 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
협업 필터링 추천 기법은 전자상거래 기업들이 추천시스템을 도입한 이래로 가장 널리 사용되고 있다. 그러나 온라인에서 상품이나 콘텐츠의 구매가 일상화되면서 단순히 구매 고객의 평점만을 사용하는 추천 방식으로는 추천의 정확성이 낮아지는 문제점이 발생하였다. 본 논문에서는 추천의 정확성을 향상시키기 위해, 상품 리뷰를 분석하고 이를 가중치로 사용한 협업 필터링 추천 기법을 제안한다. 제안하는 기법은 상품에 대한 리뷰를 텍스트 마이닝 기법으로 정제하여 특징을 추출하고 감성 기반 분석을 통해 감성 점수를 산출한다. 사용자에게 더 나은 아이템을 추천하기 위해 산출된 점수를 아이템 예측 값 계산 시 가중치로 사용한다. 실험을 통해 전통적인 협업 필터링 기법보다 제안하는 기법의 정확성이 향상되는 것을 확인할 수 있었다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 감성분석을 적용한 추천기법
Ⅳ. 실험 및 평가
Ⅴ. 결론 및 향후 연구 방향
REFERENCES

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-001174263