메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박성관 (서울과학기술대학교) 김동환 (서울과학기술대학교)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제26권 제11호
발행연도
2020.11
수록면
955 - 963 (9page)
DOI
10.5302/J.ICROS.2020.20.0125

이용수

DBpia Top 5%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, the performance of autonomous flight was analyzed by introducing the PPO method as reinforcement learning for autonomous flight of drones. A simulator based on the dynamics of a drone was produced, and the performance of autonomous flight was confirmed when reinforcement learning was applied to a drone using this simulator. After that, the possibility of autonomous flight was confirmed by applying the PPO algorithm to the actual drone. Also, a lightweight embedded PC was attached to the drone to perform independent calculations to simultaneously construct obstacle avoidance and path planning.

목차

Abstract
I. 서론
II. 심층 강화학습 기법 적용
III. 3d 시뮬레이터
IV. 강화학습 모델의 실제 적용
V. 실험 결과
VI. 결론
REFERENCES

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-003-001571238