메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
조경희 (Pusan National University) 김응상 (Korea Electrotechnology Research Institute) 이동규 (Korea Electrotechnology Research Institute) 이문수 (Korea Electrotechnology Research Institute) 박준호 (Pusan National University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제69권 제11호
발행연도
2020.11
수록면
1,682 - 1,688 (7page)
DOI
10.5370/KIEE.2020.69.11.1682

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Countries are looking for a pathway toward a sustainable transition from fossil-based to less or zero-carbon sources in energy sector in order to reduce its impact from climate change. Among different renewable resources, photovoltaic power system (PV) is considered as one of the most promising technology, which has the biggest potential for increasing renewable energy. However, its profit can be varied depending on operation and management, which possibly causes performance degradation and safety issues due to faults. Therefore, we have collected actual operation data from the PV monitoring system which located in Changwon, Gyeong-nam province during one year. While most of the PV system has security function which is limited to its inverter protection, in this study, based on fault data software program is developed for fault diagnosis in order to increase robustness of the PV system and minimize operation cost. Also, the program comprises machine learning algorithm based on fault data to classify its types of faults. It also presents economic loss of each PV module considering mean time to repair (MTTR) occurred from the event of faults in the PV system. As a result, the program helps faster fault diagnosis of the PV system and decreasing overall operation cost for the system operator.

목차

Abstract
1. 서론
2. PV 실 계측데이터 분석
3. PV 고장진단 프로그램
4. 결론
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-560-001579627