메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이수진 (공주대학교) 박철희 (공주대학교) 홍도원 (공주대학교) 김재금 (우스베키스탄 한국국제대)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.48 No.1
발행연도
2021.1
수록면
128 - 140 (13page)
DOI
10.5626/JOK.2021.48.1.128

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
다양한 서비스를 이용함으로써 개인정보는 수집되며, 관리자는 수집된 데이터들로부터 가치를 추출하고 결과를 분석하여 개개인의 맞춤형 정보를 제공한다. 하지만 의료 데이터와 같은 민감한 데이터는 프라이버시 침해문제가 있으며, 이에 재현 데이터 생성 모델로 GAN이 많이 사용되고 있다. 그러나 GAN은 원본 데이터의 민감한 정보까지 학습하므로 프라이버시 취약점이 존재한다. 따라서 GAN의 프라이버시 보호를 위해 많은 연구가 수행되었다. 특히 강력한 프라이버시 보호 모델인 차분 프라이버시를 적용한 연구가 진행되었지만, 데이터의 유용성 측면에서 실제 환경에 적용하기에는 부족하다. 본 논문에서는 프라이버시와 유용성을 보장하는 Rényi 차분 프라이버시를 적용한 GAN 모델을 연구한다. 특히 WGAN 및 WGAN-GP을 기반으로 프라이버시를 보존하지 않은 기존의 모델, 차분 프라이버시를 적용한 모델, 그리고 Rényi 차분 프라이버시를 적용한 모델들을 통해 생성된 재현 데이터를 비교 분석한다.

목차

요약
Abstract
1. 서론
2. 연구 배경
3. 차분 프라이버시 보존형 모델 설계
4. 실험 및 결과
5. 분석 및 평가
6. 결론
References

참고문헌 (35)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-569-001489890