메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김민석 (부산대학교) 정승환 (부산대학교) 김종근 (부산대학교) 이한수 (부산대학교) 김성신 (부산대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제31권 제1호
발행연도
2021.2
수록면
88 - 94 (7page)
DOI
10.5391/JKIIS.2021.31.1.088

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
안정적인 전력계통 운영을 위해서는 기상 변화에 따라 변동되는 발전량을 예측할 수 있는 시스템이 수반되어야 한다. 태양광 발전량 예측을 위해 사용되는 대부분의 기상정보는 일기예보를 통해 쉽게 획득할 수 있다. 하지만, 발전량에 많은 영향을 미치는 일사량은 일기예보에 포함되어 있지 않으므로 정확한 발전량 예측을 위해 일사량 예측과 관련된 연구가 활발히 진행되고 있다. 최근에는 시계열 데이터를 효과적으로 처리할 수 있는 순환신경망과 같은 인공지능 기술이 발전함에 따라 LSTM(Long short-term memory)을 이용한 일사량 예측 연구가 제안되고 있다. LSTM은 과거 정보를 반영함으로써 일사량 예측 성능을 높일 수 있다. 따라서, 본 논문에서는 기상 변화를 고려할 수 있는 입력변수(대기권 밖 일사량, 대기청명도 등)를 생성한 다음 LSTM에 적용하여 다음 날의 시간별 일사량을 예측하는 방법을 제안하였다. 실험 결과, 제안된 방법이 인공신경망을 이용한 일사량 예측 방법 보다 시간별 일사량을 적절히 예측할 수 있음을 확인하였다.

목차

요약
Abstract
1. 서론
2. 실험 데이터 및 LSTM 구조
3. 기상 변화를 고려하기 위한 입력변수 및 LSTM 은닉층의 셀 개수 선정
4. 실험 결과
5. 결론 및 향후과제
References

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0