메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
송주현 (계명대학교) 이덕우 (계명대학교)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제22권 제5호
발행연도
2021.5
수록면
296 - 302 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 영상정보에 기반한 호흡상태 분류 방법을 제안한다. 호흡신호는 초광대역 레이더 센서를 이용하여 획득하고 호흡신호의 값으로 이루어진 1차원 그래프 대신 그래프의 영상 정보가 담긴 2차원 정보 기반으로 호흡상태를 분류한다. 호흡상태의 분류는 심층신경망 모델을 사용하고, 심층신경망 모델은 호흡신호 그래프가 포함된 2차원 영상의 특징들을 학습하여 영상기반의 호흡상태 분류의 결과를 제공한다. 기존의 레이더 센서 기반 호흡신호의 상태 분류는 1차원 벡터의 구성요소 값 및 그 값들의 변화량을 이용하여 회귀, 심층학습 방법을 적용하였다. 그러나 1차원 그래프 기반의 호흡상태 분류는 다양한 형태의 정상호흡 상태에 대한 분류 성능에서 한계를 보였다. 본 논문에서는 호흡 신호로부터 얻은 그래프의 이미지 자체를 2차원 입력 신호로 사용하여 심층 신경망 모델을 적용하여 분류를 수행하였다. 본 논문에서 제안하는 영상정보 기반의 호흡상태 분류는 기존의 1차원 벡터 기반 호흡상태 분류 대비 호흡상태 분류의 정확도를 약 10% 향상 시켰다. 또한 기존의 두 가지 호흡상태 (정상 및 비정상) 분류에서 확장하여 세 가지 호흡상태 (정상1, 정상2, 비정상) 분류를 수행하였다.

목차

요약
Abstract
1. 서론
2. UWB 레이더 기반 호흡신호 표현
3. 1차원 벡터 기반 호흡상태 학습
4. CNN 기반 호흡상태 분류
5. 실험
6. 결론
References

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-505-001753079