메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Soo-Tai Nam (Pusan National University) Seong-Yoon Shin (Kunsan National University) Chan-Yong Jin (Wonkwang University)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제25권 제9호
발행연도
2021.9
수록면
1,199 - 1,205 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
빅데이터 시대에는 단순히 데이터베이스에 잘 정리된 정형 데이터뿐만 아니라 인터넷, 소셜 네트워크 서비스, 모바일 환경에서 실시간 생성되는 웹 문서, 이메일, 소셜 데이터 등 비정형 빅데이터를 효과적으로 분석하는 것이 매우 중요하다. 빅데이터 분석은 데이터 저장소에 저장된 빅데이터 속에서 의미 있는 새로운 상관관계, 패턴, 추세를 발견하여 새로운 가치를 창출하는 과정이다. 빅데이터 분석 도구인 R 언어를 이용하여 비정형 논문 데이터를 빈도분석을 통해 분석결과를 요약과 시각화하고자 한다. 본 연구에서 사용된 데이터는 한국정보통신학회 학회지 논문 중에서 2021년 1월호-5월호 총 논문 104편을 대상으로 분석하였다. 최종 분석결과 가장 많이 언급된 키워드는 “데이터”가 1,538회로 1위를 차지하였다. 따라서 분석결과를 바탕으로 연구의 한계와 이론적 실무적 시사점을 제시하고자 한다.

목차

요약
ABSTRACT
Ⅰ. INTRODUCTION
Ⅱ. RELATED RESEARCH
Ⅲ. RESEARCH METHOD
Ⅳ. TEXT MINING
Ⅴ. CONCLUSIONS
REFERENCES

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0