메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이도훈 (서울시립대학교) 김한준 (서울시립대학교) 전종훈 (명지대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제21권 제11호
발행연도
2021.11
수록면
135 - 144 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 데이터 기반 의사결정 기술이 데이터 산업을 이끄는 핵심기술로 자리 잡고 있는바, 이를 위한 머신러닝 기술은 고품질의 학습데이터를 요구한다. 하지만 실세계 데이터는 다양한 이유에 의해 결측값이 포함되어 이로부터 생성된 학습된 모델의 성능을 떨어뜨린다. 이에 실세계에 존재하는 데이터로부터 고성능 학습 모델을 구축하기 위해서 학습데이터에 내재한 결측값을 자동 보간하는 기법이 활발히 연구되고 있다. 기존 머신러닝 기반 결측 데이터 보간 기법은 수치형 변수에만 적용되거나, 변수별로 개별적인 예측 모형을 만들기 때문에 매우 번거로운 작업을 수반하게 된다. 이에 본 논문은 수치형, 범주형 변수가 혼합된 데이터에 적용 가능한 데이터 보간 모델인 Denoising Self-Attention Network(DSAN)를 제안한다. DSAN은 셀프 어텐션과 디노이징 기법을 결합하여 견고한 특징 표현 벡터를 학습하고, 멀티태스크 러닝을 통해 다수개의 결측치 변수에 대한 보간 모델을 병렬적으로 생성할 수 있다. 제안 모델의 유효성을 검증하기 위해 다수개의 혼합형 학습데이터에 대하여 임의로 결측 처리한 후 데이터 보간 실험을 수행한다. 원래 값과 보간 값 간의 오차와 보간된 데이터를 학습한 이진 분류 모델의 성능을 비교하여 제안 기법의 유효성을 입증한다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 디노이징 셀프 어텐션 네트워크
Ⅳ. 실험 및 결과
Ⅴ. 결론
참고문헌

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-310-000065308