메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
장보석 (김천대학교)
저널정보
한국방사선산업학회 방사선산업학회지 방사선산업학회지 제14권 제2호
발행연도
2020.1
수록면
187 - 193 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (5)

초록· 키워드

오류제보하기
In this study, a statistical prediction model was proposed by adopting the hypothesis of converting the distribution of SUVm of 80 people with normal thyroid, thyroiditis, and thyroid cancer to a probability density function. The mathematical prediction model corresponding to each patient group was set at the 95% confidence interval considering the statistical significance level, and the clinical guidelines for the normal thyroid, thyroiditis, and thyroid cancer patient groups were presented. The SUVm distribution of the normal thyroid shows the narrowest variance (1.48~1.92) around the median SUVm 1.7. Under SUVm 1.48, a normal thyroid can be confirmed. The SUVm distribution of thyroid inflammation is a section (2.16~3.52) centered on the median 2.84, so there is a section overlapped with the area of thyroid cancer, so a delay scan is required. The SUVm distribution of thyroid cancer shows the widest variance from (1.82 to 4.34) in the 95% confidence interval around the median 3.28. Below SUVm 1.82, the probability of being diagnosed with thyroid cancer is less than 5%, and if it exceeds SUVm 3.52, it can be confirmed as thyroid cancer. In the SUVm mixed section, which is difficult to distinguish between false positives and positives, an optimal cut-off value of SUVm 1.82 was suggested to visually discriminate between normal and thyroid cancer patients. Statistically significant when the delay test was determined based on the proposed cut-off value of 1.82 (p<0.05). Therefore, the cutoff values proposed in the dual time point PET/CT exam can help to obtain accurate imaging information about thyroid cancer.

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0