메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이성열 (Korea Institute of Civil Engineering and Building Technology) 김진영 (Korea Institute of Civil Engineering and Building Technology) 강재모 (Korea Institute of Civil Engineering and Building Technology) 백원진 (Chonnam National University)
저널정보
한국지반환경공학회 한국지반환경공학회 논문집 한국지반환경공학회 논문집 제23권 제4호
발행연도
2022.4
수록면
5 - 10 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
최근 도심지에서는 지반침하가 지속적으로 발생하여 시민의 안전을 위협하고 있다. 상하수도관, 통신관 등 각종 지하시설물이 도로 밑에 매설되어 있다. 지반침하의 원인으로는 도심지에 매설되어 있는 각종 시설물의 노후화와 급격한 도시화로 인한 지하 난개발로 인한 것으로 보고되고 있다. 특히 지반침하의 가장 큰 원인은 하수관로의 노후화로 알려져 있다. 이와 관련된 기존연구로는 하수관로의 대표적인 몇 가지 요인을 선정하여 통계분석을 통해 지반침하 위험을 예측하는 연구가 진행되었다. 본 연구에서는 OO시의 하수관 특성과 지반침하 데이터를 이용하여 데이터셋을 구축하고, OO시의 하수관 특성과 지반함몰 발생 위치 데이터로 구축된 데이터셋으로 기계학습을 통한 하수관 특성에 따른 지반함몰 발생 분류 모델들을 비교하여 적절한 모델을 선정하고자 하였으며, 선정된 모델에서 도출된 지반함몰에 영향을 미치는 하수관 특성별 중요도를 산정하고자 하였다.

목차

ABSTRACT
요지
1. 서론
2. 기계학습 알고리즘
3. 예측모델 데이터의 구성
4. 기계학습 알고리즘 적용 및 결과
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0