메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김유철 (선박해양플랜트연구소) 김광수 (선박해양플랜트연구소) 황승현 (선박해양플랜트연구소) 연성모 (선박해양플랜트연구소)
저널정보
대한조선학회 대한조선학회 논문집 대한조선학회논문집 제59권 제4호(통권 제244호)
발행연도
2022.8
수록면
243 - 250 (8page)
DOI
10.3744/SNAK.2022.59.4.243

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the design stage of hull forms, a fast prediction method of resistance performance is needed. In these days, large test matrix of candidate hull forms is tested using Computational Fluid Dynamics (CFD) in order to choose the best hull form before the model test. This process requires large computing times and resources. If there is a fast and reliable prediction method for hull form performance, it can be used as the first filter before applying CFD. In this paper, we suggest the offset-based performance prediction method. The hull form geometry information is applied in the form of 2D offset (non-dimensionalized by breadth and draft), and it is studied using Convolutional Neural Network (CNN) and adapted to the model test results (Residual Resistance Coefficient; CR). Some additional variables which are not included in the offset data such as main dimensions are merged with the offset data in the process. The present model shows better performance comparing with the simple regression models.

목차

1. 서론
2. 기계학습 모델 개요
3. 데이터 구성 및 학습 방법
4. 학습 결과
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-538-001618754