특허의 사적 가치(private value)를 나타내는 특허수명 추정은 오래전부터 연구되었으나 추정과정에서 선형모델에 의존하는 경우가 대부분이었고, 기계학습 방법을 사용하더라도 변수 간 관계에 대한 해석이나 설명이 부족하였다. 본 연구에서는 특허의 생존 기간이 특허의 가치를 대리한다는 기존 연구결과를 바탕으로 특허 등록 이후의 생존 기간(연장횟수) 예측을 통해 특허의 가치를 추정한다. 이를 위해 1996~2017년까지 미국 특허청(USPTO)에 출원하여 등록된 특허 4,033,414개를 수집하였다. 특허수명을 예측하기 위해 기존 연구에서 특허수명에 영향을 미친다고 밝혀진 특허의 특성, 특허의 소유자 특성, 특허의 발명가 특성을 반영할 수 있는 다양한 변수가 사용되었다. 서로 다른 4개의 모델(Ridge Regression, Random Forest, Feed-forward Neural Network, Gradient Boosting Models)을 생성하고, 모델 학습 과정에서는 5-fold Cross Validation으로 초매개변수 조정이 이루어졌다. 이후 생성된 모델의 성능을 평가하고 특허수명을 추정할 수 있는 예측변수의 상대적 중요도를 제시하였다. 또한, 성능이 우수했던 Gradient Boosting Model을 기반으로 Accumulated Local Effects Plot을 제시하여 예측변수와 특허수명 간 관계를 시각적으로 나타내었다. 마지막으로 모델에 의해서 평가된 개별특허의 평가 근거를 제시하기 위하여 Kernal SHAP(SHapley Additive exPlanations)을 적용하고 특허평가 시스템에의 적용 가능성을 제시한다. 본 연구는 기존에 특허수명을 추정하는 연구에 누적적으로 기여한다는 점 그리고 선형성을 바탕으로 진행된 기존 특허수명 추정 연구들의 한계를 보완하고 복잡한 비선형 관계를 설명가능한 방식으로 제시하였다는 점에서 학문적 의의가 있다. 또한, 개별 특허의 평가 근거를 도출하는 방법을 소개하고 특허평가 시스템에의 적용 가능성을 제시하였다는 점에서 실무적 의의가 있다.
Although the number of patent which is one of the core outputs of technological innovation continues to increase, the number of low-value patents also hugely increased. Therefore, efficient evaluation of patents has become important. Estimation of patent lifespan which represents private value of a patent, has been studied for a long time, but in most cases it relied on a linear model. Even if machine learning methods were used, interpretation or explanation of the relationship between explanatory variables and patent lifespan was insufficient. In this study, patent lifespan (number of renewals) is predicted based on the idea that patent lifespan represents the value of the patent. For the research, 4,033,414 patents applied between 1996 and 2017 and finally granted were collected from USPTO (US Patent and Trademark Office). To predict the patent lifespan, we use variables that can reflect the characteristics of the patent, the patent owner’s characteristics, and the inventor’s characteristics. We build four different models (Ridge Regression, Random Forest, Feed Forward Neural Network, Gradient Boosting Models) and perform hyperparameter tuning through 5-fold Cross Validation. Then, the performance of the generated models are evaluated, and the relative importance of predictors is also presented. In addition, based on the Gradient Boosting Model which have excellent performance, Accumulated Local Effects Plot is presented to visualize the relationship between predictors and patent lifespan. Finally, we apply Kernal SHAP (SHapley Additive exPlanations) to present the evaluation reason of individual patents, and discuss applicability to the patent evaluation system. This study has academic significance in that it cumulatively contributes to the existing patent life estimation research and supplements the limitations of existing patent life estimation studies based on linearity. It is academically meaningful that this study contributes cumulatively to the existing studies which estimate patent lifespan, and that it supplements the limitations of linear models. Also, it is practically meaningful to suggest a method for deriving the evaluation basis for individual patent value and examine the applicability to patent evaluation systems.