메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박슬아 (Seoul National University) 송아람 (Kyungpook National University)
저널정보
한국측량학회 한국측량학회지 한국측량학회지 제40권 제3호
발행연도
2022.6
수록면
227 - 237 (11page)

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
다시기 고해상도 영상에 존재하는 건물의 위치 및 형태학적 왜곡은 건물의 변화탐지를 어렵게 만드는 요인 중 하나이다. 이를 해결하기 위하여 부가적인 3차원 지형정보 및 딥러닝을 활용한 연구가 수행되고 있지만, 실제 사례에 적용되기 어려운 한계가 있다. 본 연구에서는 건물의 효율적인 변화탐지를 수행하기 위하여, 건물의 위치 정보 뿐만 아니라 건물 간 위상정보를 활용하는 방안을 제시한다. 다양한 비연직 영상에서의 건물을 학습하기 위하여 SpaceNet v2 데이터셋을 사용하여 Mask R-CNN (Region-based Convolutional Neural Network)을 학습하였으며, 건물 객체를 탐지하여 중심점을 노드로 추출하였다. 추출한 건물 노드를 중심으로 서로 다른 두 시기에 대해 각각 TIN (Triangulated Irregular Network) 그래프들을 형성하고, 두 그래프 간 구조적 차이가 발생한 영역에 기반하여 변화 건물을 추출하기 위해 그래프 유사도와 노드의 위치 차이를 반영한 변화 지수를 제안하였다. 최종적으로 변화 지숫값을 기반으로 두 그래프 간 비교를 통해 새롭게 생성되거나 삭제된 건물을 탐지하였다. 총 3쌍의 테스트 영역에 대해 제안한 기법을 적용한 결과, 건물들 간 연결성의 변화를 고려함으로써 기복 변위에 의해 서로 다른 시기간 동일 건물 쌍을 판단하기 어려운 경우에도 변화가 발생한 건물을 적절하게 탐지하는 것을 확인할 수 있었다.

목차

Abstract
초록
1. 서론
2. 건물 변화탐지
3. 데이터셋
4. 실험 및 결과
5. 요약 및 결론
References

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0