메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Kyutae Kim (Hanyang University) Qiong Jia (Hanyang University) Tianyu Dong (Hanyang University) Euee S. Jang (Hanyang University)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2022 하계학술대회
발행연도
2022.6
수록면
484 - 487 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we propose a conceptual framework that identifies video frames in motion containing the movement of people and vehicles in traffic videos. The automatic selection of video frames in motion is an important topic in security and surveillance video because the number of videos to be monitored simultaneously is simply too large due to limited human resources. The conventional method to identify the areas in motion is to compute the differences over consecutive video frames, which has been costly because of its high computational complexity. In this paper, we reduced the overall complexity by examining only the keyframes (or I-frames). The basic assumption is that the time period between I-frames is rather shorter (e.g., 1/10 ~ 3 secs) than the usual length of objects in motion in video (i.e., pedestrian walking, automobile passing, etc.). The proposed method estimates the possibility of videos containing motion between I-frames by evaluating the difference of consecutive I-frames with the long-time statistics of the previously decoded I-frames of the same video. The experimental results showed that the proposed method showed more than 80% accuracy in short surveillance videos obtained from different locations while keeping the computational complexity as low as 20 % compared to the HM decoder.

목차

요약
1. Introduction
2. Background
3. Proposed method
4. Experimental Results
5. Conclusion
6. References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-567-001633010