메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김윤정 (이글루코퍼레이션) 김문선 (소프트버스) 이만희 (한남대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제32권 제5호
발행연도
2022.10
수록면
945 - 954 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
매년 수십억 건의 악성코드가 탐지되고 있지만, 이 중 신종 악성코드는 0.01%에 불과하다. 이러한 상황에 효과적인 악성코드 유형 분류 도구가 필요하지만, 선행 연구들은 복잡하고 방대한 양의 데이터 전처리 과정이 필요하여 많은 양의 악성코드를 신속하게 분석하기에는 한계가 있다. 이 문제를 해결하기 위해 본 논문은 유사성 해시를 기반으로 복잡한 데이터 전처리 과정 없이 악성코드의 유형을 분류하는 기법을 제안한다. 이 기법은 악성코드의 유사성 해시 정보를 바탕으로 XGBoost 모델을 학습하며, 평가를 위해 악성코드 분류 분야에 널리 활용되는 BIG-15 데이터셋을 사용했다. 평가 결과, 98.9%의 정확도로 악성코드를 분류했고, 3,432개의 일반 파일을 100% 정확도로 구분했다. 이 결과는 복잡한 전처리 과정 및 딥러닝 모델을 사용하는 대부분의 최신 연구들보다 우수하다. 따라서 제안한 접근법을 사용하면 보다 효율적인 악성코드 분류가 가능할 것으로 예상된다.

목차

요약
ABSTRACT
I. 서론
II. 배경 지식
III. 관련 연구
IV. 유사성 해시 기반 악성코드 분류 기법
V. 실험
VI. 결론
References

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0