메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김수희 (숙명여자대학교) 이기용 (숙명여자대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제28권 제11호
발행연도
2022.11
수록면
550 - 556 (7page)
DOI
10.5626/KTCP.2022.28.11.550

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근 딥러닝을 이용한 시계열 데이터 분류가 활발히 연구되면서 대량의 데이터 확보가 더욱 중요해지고 있다. 하지만 레이블(label)이 존재하는 시계열 데이터를 대량으로 확보하는 것은 많은 경우 쉽지 않은 일이다. 따라서 본 논문은 시계열 분류 모델의 성능을 향상시키기 위한 시계열 데이터의 효과적인 데이터 증강 기법과 그를 이용한 대조 학습 기반 사전 훈련 기법을 제안한다. 제안하는 시계열 데이터 증강 기법은 원 시계열 데이터의 측정 간격 및 특성을 유지하면서 길이가 다른 새로운 데이터를 생성한다. 또한 제안하는 시계열 분류 모델 사전 훈련 기법은 제안 증강 기법으로 생성된 시계열 데이터를 활용하여 시계열 분류 모델이 유사한 시계열 데이터와 유사하지 않은 시계열 데이터를 구분할 수 있도록 학습시킴으로써 시계열 분류 모델의 성능을 향상시킨다. 제안하는 시계열 데이터 증강 기법 및 사전 훈련 기법을 사용자 행동 분류 모델에 적용한 결과 모델의 정확도를 최대 18%p 향상시킴을 확인하였다.

목차

요약
Abstract
1. 서론
2. 시계열 데이터 증강 기법
3. 제안하는 대조 학습 기반 사전 훈련 기법
4. 성능 평가
5. 결론
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0