메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김경수 (고려대학교) 김성범 (고려대학교)
저널정보
대한산업공학회 대한산업공학회 추계학술대회 논문집 2022년 대한산업공학회 추계학술대회
발행연도
2022.11
수록면
795 - 808 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In the steel manufacturing process, the hot rolling process involves the thin rolling of materials at a high temperature. Producing hot rolled products with the optimal thickness is one of the most important tasks to meet the customers’ needs. To control the thickness, accurate measuring is essential. Because the thickness gauge is located at the exit of the rolling mill, the head part of hot rolled products cannot be controlled after measurement. Consequently, most thickness defects occur at the head part. In this study, we attempt to predict the thickness of the head part before finishing rolling process by using various machine learning methods. Further, explainable artificial intelligent methods are used to identify the factors that significantly affect to the thickness. Having identified these significant factors, we use Bayesian optimization to discover the optimal rolling pattern in finishing rolling process for the target thickness. It can be seen that the thickness deviation during rolling can be reduced by 29.6% using the optimized rolling pattern.

목차

Abstract
1. 서론
2. 관련 연구
3. 제안 방법론
4. 결과
4. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-530-000177794