메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
공희산 (성균관대학교) 김광수 (성균관대학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제28권 제4호
발행연도
2022.12
수록면
27 - 40 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근 많은 발전을 이룬 의료 인공지능은 의사가 진단과 결정을 내리는 데 도움을 주는 등 중요한 역할을 수행하고 있다. 특히, 흉부 엑스레이 분야는 접근성 및 흉부질환 탐지에 유용함과 최근 COVID-19 상황이 도래함에 따라 많은 관심을 받고 있다. 그러나, 데이터의 수가 많음에도 레이블이 있는 데이터의 수가 부족하므로 효과적인 인공지능 모델을 만드는데 한계가 있다. 이러한 문제를 완화하는 방안으로 연합학습을 흉부 엑스레이 데이터에 적용한 연구가 등장했지만, 여전히 다음과 같은 문제를 내포하고 있다. 1) Non-IID 환경에서 발생할 수 있는 문제를 고려하지 않았다. 2) 연합학습 환경에서도 여전히 클라이언트의 레이블이 있는 데이터가 부족하다. 우리는 자기지도학습 모델을 연합학습의 Global 모델로 사용함으로써 위와 같은 문제를 해결하는 방법을 제안한다. 이를 위해 흉부 엑스레이 데이터를 사용한 연합학습에 알맞은 자기지도학습 방법론을 실험적으로 탐색하며, 자기지도학습 모델을 연합학습에 사용함으로써 얻을 수 있는 장점을 검증한다.

목차

1. 개요
2. 관련 연구
3. 제안 방법
4. 실험 및 결과
5. 결론
참고문헌(References)
Abstract

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0