메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김상진 (Hankook Electric Power Information) 임현근 (Hankook Electric Power Information) 장병훈 (Hankook Electric Power Information) 우성민 (Chungbuk Technopark)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제26권 제4호
발행연도
2022.12
수록면
8 - 13 (6page)

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
배터리를 효율적으로 관리하기 위해서는 배터리의 건강 상태와 잔여 수명을 정확하게 추정하고 관리하는 것이 중요하다. 배터리는 같은 종류여도 설비용량 및 전압 등의 특성이 다르며 학습용 모델을 위한 배터리와 모델을 통한 예측을 위한 배터리가 서로 다를 경우에는 정확도 측정에 한계가 있다. 본 논문에서는 전압의 분포와 방전 시간을 이용한 엔트로피 지수를 일반화하고 4개의 배터리를 각각 1개씩 교차적으로 훈련 집합과 테스트 집합으로 정의하여 기계학습의 선형회귀 분석을 통하여 배터리의 건강 상태를 예측하는 방법을 제안하였다. 제안된 방법은 평균 절대값 퍼센트 오차를 이용하여 95% 이상의 높은 정확도를 나타내었다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-056-000303342