메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Woosung Choi (Chosun University) Honggi Yeom (Chosun University) Nakyong Ko (Chosun University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
1,072 - 1,076 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Brain-computer interface (BCI) is a promising technology that controls computers or machines using brain signals. With this technology, people with various disabilities, such as neural paralysis, and spinal cord injury can control electric devices or express their intention by thinking. However, previous BCI studies have a limitation that they can predict only one type of intention. To use the BCI system in daily life, the BCI user should be able to achieve various tasks such as moving, text typing, and arm movements. In this paper, we propose a multi-functional BCI method that can predict various intentions simultaneously. To classify multiple intentions, we proposed two prediction models using Neural Networks (NN) and Convolutional Neural Networks (CNN) models. To evaluate the proposed BCI system, the classification accuracy of the model was measured and compared using steady state visually evoked potential (SSVEP), sensory motor rhythm (SMR), and both of them (Multiple Intention). The average prediction accuracies were 22.46% in NN, 55.86% in CNN. These results indicate that the proposed multi-functional BCI can predict multiple intentions. It also means that users of the proposed BCI system can control various electric devices simultaneously.

목차

Abstract
1. INTRODUCTION
2. METHOD
3. RESULTS
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0