메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이상훈 (한국전력기술(주)) 김대호 (한국전력기술(주)) 최혁진 ((주)해안해양기술) 오영진 (한국전력기술(주)) 문성빈 (한국전력기술(주))
저널정보
한국풍력에너지학회 풍력에너지저널 풍력에너지저널 제13권 제2호
발행연도
2022.6
수록면
42 - 52 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In this paper, we propose a time-series generation methodology using a generative adversarial network (GAN) for long-term prediction of wind and sea conditions, which are information necessary for operations and maintenance (O&M) planning and optimal plans for offshore wind farms. It is a “Conditional TimeGAN” that is able to control time-series data with monthly conditions while maintaining a time dependency between time-series. For the generated time-series data, the similarity of the statistical distribution by direction was confirmed through wave and wind rose diagram visualization. It was also found that the statistical distribution and feature correlation between the real data and the generated time-series data was similar through PCA, t-SNE, and heat map visualization algorithms. The proposed time-series generation methodology can be applied to monthly or annual marine weather prediction including probabilistic correlations between various features (wind speed, wind direction, wave height, wave direction, wave period and their time-series characteristics). It is expected that it will be able to provide an optimal plan for the maintenance and optimization of offshore wind farms based on more accurate long-term predictions of sea and wind conditions by using the proposed model.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0