메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이동환 (과학기술연합대학원대학교) 유장희 (한국전자통신연구원)
저널정보
한국소프트웨어감정평가학회 한국소프트웨어감정평가학회논문지 한국소프트웨어감정평가학회 논문지 제17권 제2호
발행연도
2021.12
수록면
1 - 10 (10page)
DOI
10.29056/jsav.2021.12.01

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
감정인식은 응용 분야의 다양성으로 많은 연구가 이루어지고 있는 기술이며, RGB 영상은 물론 열화상을이용한 감정인식의 필요성도 높아지고 있다. 열화상의 경우는 RGB 영상과 비교해 조명 문제에 거의 영향을받지 않는 장점이 있으나 낮은 해상도로 성능 높은 인식 기술을 필요로 한다. 본 논문에서는 얼굴 열화상 기반 감정인식의 성능을 높이기 위한 Divide and Conquer 기반의 CNN 학습전략을 제안하였다. 제안된 방법은먼저 분류가 어려운 유사 감정 클래스를 confusion matrix 분석을 통해 동일 클래스 군으로 분류하도록 학습시키고, 다음으로 동일 클래스 군으로 분류된 감정 군을 실제 감정으로 다시 인식하도록 문제를 나누어서 해결하는 방법을 사용하였다. 실험을 통하여, 제안된 학습전략이 제시된 모든 감정을 하나의 CNN 모델에서 인식하는 경우보다 모든 실험에서 높은 인식성능을 보이는 것을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0