메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이은주 (부산대학교) 박민규 (부산대학교) 김충락 (부산대학교)
저널정보
한국통계학회 응용통계연구 응용통계연구 제35권 제2호
발행연도
2022.4
수록면
327 - 333 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
차원 축소를 위한 통계적 방법중에 주성분분석이 가장 널리 사용되고 있으나 주성분 분석의 여러 가지 장점에도 불구하고 이상치에 매우 민감하여 이를 강건화 하기 위한 여러 가지 방법이 제시되었다. 그 중에서도 Candès 등 (2011)과 Chandrasekaran 등 (2011)이 제안한 강건 주성분분석이 계산 가능하며 가장 효율적인 방법으로 알려져 있으며 최근 비디오 감시, 안면인식 등의 인공지능분야에 많이 사용되고 있다. 본 논문에서는 강건 주성준 분석의 개념과 최근 제안된 가장 효율적인 알고리즘을 소개한다. 아울러 실제 자료에 근거한 예제를 소개하고 향후 연구분야도 제안한다.

목차

Abstract
1. 서론
2. 강건 주성분분석
3. 결론 및 향후 연구과제
References
요약

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001441168