메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yeon-Ji Lee (Sungshin Women’s University) Ye-Sol Oh (Sungshin Women’s University) Na-Eun Park (Sungshin Women’s University) Il-Gu Lee (Sungshin Women’s University)
저널정보
한국정보통신학회JICCE Journal of information and communication convergence engineering Journal of information and communication convergence engineering Vol.21 No.1
발행연도
2023.3
수록면
75 - 81 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Video platforms, including YouTube, have a structure in which the number of video views is directly related to the publisher’s profits. Therefore, video publishers induce viewers by using provocative titles and thumbnails to garner more views. The conventional technique used to limit such harmful videos has low detection accuracy and relies on follow-up measures based on user reports. To address these problems, this study proposes a technique to improve the accuracy of filtering harmful media using thumbnails, titles, and audio data from videos. This study analyzed these three pieces of multimodal information; if the number of harmful determinations was greater than the set threshold, the video was deemed to be harmful, and its upload was restricted. The experimental results showed that the proposed multimodal information extraction technique used for harmfulvideo filtering achieved a 9% better performance than YouTube’s Restricted Mode with regard to detection accuracy and a 41% better performance than the YouTube automation system.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. RELATED WORK
Ⅲ. IMPLEMENTATION OF HARMFUL-MEDIA FILTERING FRAMEWORK
Ⅳ. EVALUATION AND ANALYSIS
Ⅴ. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-004-001659643