메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
모윤호 (가천대학교) 강상우 (가천대학교)
저널정보
한국디지털콘텐츠학회 디지털콘텐츠학회논문지 디지털콘텐츠학회논문지 제24권 제6호
발행연도
2023.6
수록면
1,221 - 1,228 (8page)
DOI
10.9728/dcs.2023.24.6.1221

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근에는 목적 지향 대화 시스템의 성능 향상을 위해 Hyper-Scale의 Transformer기반의 사전 학습된 언어 모델을 사용하고 있다. 하지만 사전 학습된 언어 모델의 크기가 증가함에 따라 Fine-tuning을 진행할 때 문제점이 발생한다. 언어 모델의 Fine-tuning 과정은 전체 파라미터를 학습하기 때문에 크기가 증가하면 학습 시간이 오래 소요된다. 또한 충분한 저장 공간이 필요하다. 본 연구는 이러한 문제점을 해결하기 위해 Transformer 기반의 언어 모델에 해당하는 파라미터는 학습하지 않고 이후 Adapter, LoRA의 구조를 결합해 대화 지식을 효율적으로 학습하는 방법을 제안한다. 제안 모델의 성능 평가는 목적 지향 대화 시스템에서 주로 쓰이는 벤치마크 데이터 셋인 Multi-WOZ 2.0 데이터를 사용했다. 실험결과 기존 모델의 Fine-tuning에 비해 8%의 파라미터로 학습을 진행했음에도 불구하고 제안모델은 기존 모델과 2% 오차범위 내의 비슷한 성능을 보였다. 따라서 학습시간과 저장공간의 효율성이 비약적으로 향상되었음을 증명하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 제안 방법
Ⅳ. 실험
Ⅴ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0