메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김지현 (성신여자대학교) 김예림 (성신여자대학교) 변혜원 (성신여자대학교)
저널정보
한국디지털콘텐츠학회 디지털콘텐츠학회논문지 디지털콘텐츠학회논문지 제24권 제6호
발행연도
2023.6
수록면
1,361 - 1,371 (11page)
DOI
10.9728/dcs.2023.24.6.1361

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
이모티콘 추천은 수천 개의 이모티콘들 중에서 사용자가 원하는 적절한 이모티콘을 용이하게 찾도록 도와주는 중요한 태스크이다. 기존의 이모티콘 추천 방법들은 채팅 플랫폼을 대상으로 하며 사용자들이 많이 사용하는 감정 이모티콘 위주로 추천한다. 그러나 인스타그램 등 SNS 플랫폼에서는 감정 전달보다는 업로드한 짧은 게시글의 내용을 보완하거나 강조하는 용도로 이모티콘을 사용하는 경향이 있다. 이 연구에서는 SNS 플랫폼에서 한국어 게시글의 문맥을 파악하여 이모티콘을 추천하는 새로운 방법론을 제안한다. 이모티콘 추천 문제에 계층적 KoBERT를 도입하여 한국어 게시글의 문맥을 파악하고 이에 적합한 다양한 이모티콘을 추천한다. 314개 이모티콘 카테고리에 속하는 616개의 이모티콘 추천은 SNS 게시글의 함축적인 단문을 보다 정확하게 전달하는데 유용하다. 인스타그램 게시글을 수집하여 실제 세계를 반영하는 데이터셋을 구성하고 각 텍스트에 삽입되어 있는 이모티콘의 계층적 카테고리를 학습하기 위해 계층적 KoBERT 모델을 구축한다. 실험 결과에서 DNN, LSTM, Bi-LSTM, GRU 모델과 비교하여 계층적 KoBERT 모델이 이모티콘 추천에서 높은 성능을 보이는 것을 검증하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련연구
Ⅲ. 계층적 이모티콘 카테고리
Ⅳ. 시스템 구조
Ⅴ. 데이터 처리
Ⅵ. 계층적 KoBERT 모델
Ⅶ. 실험
Ⅷ. 결론 및 향후 연구
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0