메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이승훈 (Korea Maritime and Ocean University) 김보라 (Korea Maritime and Ocean University) 이정훈 (Korea Maritime and Ocean University) 김준영 (Korea Maritime and Ocean University) 윤민 (Korea Maritime and Ocean University)
저널정보
한국가시화정보학회 한국가시화정보학회지 한국가시화정보학회지 Vol.21 No.2
발행연도
2023.7
수록면
83 - 90 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The shape of an airfoil is a critical factor in determining aerodynamic characteristics such as lift and drag. Aerodynamic properties of an airfoil have a decisive impact on the performance of various engineering applications, including airplane wings and wind turbine blades. Therefore, it is essential to analyze the aerodynamic characteristics of airfoils. Various analytical tools such as experiments, computational fluid dynamics, and Xfoil are used to perform these analyses, but each tool has its limitation. In this study, airfoil parameterization, image recognition, and artificial intelligence are combined to overcome these limitations. Image and coordinate data are collected from the UIUC airfoil database. Airfoil parameterization is performed by recognizing images from image data to build a database for deep learning. Trained model can predict the aerodynamic characteristics not only of airfoil images but also of sketches. The mean absolute error of untrained data is 0.0091.

목차

Abstract
1. 서론
2. 이론적 배경
3. 결과 및 고찰
4. 결론
REFERENCE

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-505-001939851